The realization space is
  [1   0   1             1   0   1    0                  1             1    1     1]
  [0   1   1   x1 - x2 + 1   0   0    1                  1   x1 - x2 + 1   x1   -x2]
  [0   0   0             0   1   1   -1   x1*x2 - x2^2 - 1            x2    1    x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal (x1^2*x2 - x1*x2^2 - x1 - 1, x1^2*x2^2 - 2*x1^2*x2 - x1*x2^3 + 2*x1*x2^2 - 2*x1*x2)
avoiding the zero loci of the polynomials
RingElem[x2, x1 + 1, x2 - 1, x1*x2 + 1, x1 + x2^2 - x2 + 1, x1 + x2, x1, x1^2*x2 - x1*x2 - x1 - x2^3 - x2 - 1, x1*x2 - x2^2 - x2 - 1, x1 - x2, x2 + 1, x1*x2 - x2^2 - 1, x1*x2^2 - x2^3 - x2 - 1, x1 - x2 + 1, x1*x2 - x1 - x2^2 + x2 - 1, x1*x2 - x1 - x2^2 - 1, x1*x2 - x2^2 - 2, x1 - 1, x1*x2^2 - x1*x2 + x1 - x2^3 + x2^2 - 2*x2 + 1, x1^2*x2 - 2*x1*x2^2 + x1*x2 - x1 + x2^3 - x2^2 - 1, x1^2*x2 - 2*x1*x2^2 + x1*x2 - 2*x1 + x2^3 - x2^2 + x2 - 1, x1^2*x2 - 2*x1*x2^2 + x1*x2 - 2*x1 + x2^3 - x2^2 + 2*x2 - 1]